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Abstract—Privacy is critical to data security for machine
learning algorithms and has attracted extensive attention from
academia, industry, and users in recent years. Especially in
a multi-agent reinforcement learning (MARL) system where
multiple agents interact and communicate with each other, it is
particularly indispensable to protect the private information of
agents from being inferred by eavesdroppers and malicious nodes.
In this paper, we develop Differentially Private QD-Learning
(DP-QD-Learning) to provide privacy-preserving capabilities with
theoretical guarantees for networked MARL algorithms under a
fully decentralized framework. Each agent independently collects
local personalized rewards and receives noise-disturbed DP-
protected neighbor information over the network to cooperatively
maximize team global rewards. Besides, we develop Differentially
Private Consensus MARL (DPC-MARL) with the same DP
mechanism for the scenario of high-dimensional state-action
spaces. Then, we evaluate DP-QD-Learning in the environment of
the Central Bank Monetary Policy (CBMP) and DPC-MARL in
the environment of Cooperative Adaptive Platoon Control (CAPC),
where there does not exist a center to collect all agent information
for centralized training and the transmitted information is
highly private. The results show that the decentralized agents
can still reach the consensus of opinions in CMBP and high-
quality cooperation in CAPC without transmitting accurate
private information, which also conforms to the common sense
of economics and the intuition of daily life. Our work appears
to be the first theoretical study of the privacy-preserving fully
decentralized MARL algorithm for networked agents.

Index Terms—Multi-agent Reinforcement Learning, Differential
Privacy, Networked Systems

I. INTRODUCTION

W ITH the remarkable achievements of reinforcement
learning (RL) [1], multi-agent reinforcement learning

(MARL) has been gradually showing great theoretical value
and application potential in recent years. As a branch of
RL, MARL is generally modeled as a Markov Game or a
Stochastic Game [2], which is much more complicated than
single-agent RL to learn optimal policies with the consideration
of multiple agents coexistence and interactive decision-making
in a common environment. In a variety of fields, MARL
algorithms have achieved better performance than classical
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methods or human-level such as video games, transportation,
infrastructure scheduling, and social welfare problem [3]–[7].

To address the non-stationary issue caused by the interaction
of decision-making behaviors of multiple agents, the most
popular framework of MARL algorithms is centralized training
and decentralized execution (CTDE). In CTDE, it is usually
assumed that there exists a powerful centralized controller
during the training process to collect all the actions and
observations of each agent, and then transfer a common reward
back to each agent. During the execution stage, each agent
makes decisions that only rely on individual observations.
Therefore, an intuitive idea is to use centralized training to
decompose joint team rewards into individual contributions
of each member, and update their strategies according to
individual contributions. This method is also called value
decomposition, such as VDN, QMIX, and Qtran [3], [8], [9].
For countinous control tasks, CTDE is also very effective in
the more complex cooperative and competitive environments,
such as MADDPG and COMA [10], [11]. Moreover, noting
the importance of information exchange in team cooperation,
various communication based MARL algorithms have been
developed, such as DIAL, BiCNet, NeurComm, ETCNet, and
CommPPO [6], [12]–[15]. Agents use explicit or implicit
communication protocols to get the knowledge of others’
rewards, observations or strategies, which helps the agent
understand the environment and teammate behavior better,
and make actions that are more beneficial to the team.

However, most of the above CTDE algorithms are reluctant
to handle the exponentially increasing state-action space, i.e.,
the curse of dimensionality in the center controller. Moreover,
the overwhelming amount of exchanging information between
the center and agents during the training process brings huge
pressure to the communication channel, which also leads to
the systemic risk of centralized structures. An alternative way
to relax the limitations of CTDE is developing decentralized
training decentralized execution (DTDE) MARL algorithms
on distributed networked systems [16]. During the training
process of DTDE, the avaliable information of the agent is
limited to the local topological neighbors instead of all agents
in CTDE, which avoids the potential information leakage and
overfitting to other agents’ policy. In the excution process, the
use of neighbor information promotes agents to focus on the
cooperative relationship between each other, rather than only
making decisions based on their own observations in CTDE.
This architecture of ”local interaction and global coordination”
can effectively alleviate the dimensional curse of single node
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in the training process, because the number of neighbors that
each agent can affect is usually limited, and fit for common
social systems such as cooperative autonomous driving (CAV),
power grid and sensor networks.

DTDE can greatly improve the practicability and the
flexibility of the MARL algorithms by using network to
diffuse local information, but it also faces a unique problem,
that is, the reliability of neighbor information under network
communication. Most of the DTDE MARL algorithms suppose
that the communication channels and members in the team
are safe and trustworthy enough which ignored cyberattacks
and adversarial behaviors. Recently, some research [17], [18]
have showed that when there exist malicious attack nodes
in the network, the privacy data of normal members may be
monitored by malicious agents, and the team behavior will be
misled to the wrong target, resulting in the serious crash of
the system.

To tackle the data leaking problem, a feasible solution
is to protect the privacy of the transmitted information by
applying homomorphic encryption [19]. However, encryption
technologies often require a large number of computing
resources and are difficult to be deployed on mobile devices,
for instance, autonomous vehicles and rescue robots. Compared
with encryption methods, the differential privacy (DP) method
[20] has been widely concerned as an alternative method
and applied in Google or Amazon due to the low computing
consumption and effective privacy protection ability. The DP
technique protects the privacy of data by adding uncorrelated
noises to the transmitted data in the networks. Its unique
mapping method can ensure that the malicious agent cannot
recover the original true value of the eavesdropped agents even
if it accesses the inputs, outputs, and algorithm mechanism.

Motivated by the security necessary for the practical de-
ployment of networked systems, in this article, we propose
a differential privacy based fully decentralized QD-learning
algorithm for networked systems by adding Laplace noise on
the transimitted Q-value, which prevents the privacy informa-
tion of normal agents from eavesdropping by malicious agents.
The insight here is that even if people passes the noisy and
ambiguous message, the group can still achieve the consensus
of opinions and accomplish tasks cooperatively. However, the
update process of Q-value with randomly noised neighbor
information will bring more challenges to the convergence
analysis. It is critical to design appropriate noise protection
mechanisms carefully and analyze their impact on optimal
convergence. To our best knowledge, this is the first work
to introduce differential privacy technology into the field of
networked decentralized MARL. Our main contributions are
threefolds as follows.

1) To handle the difficulty of convergence, we propose the DP
protected QD-Learning algorithm by designing decaying
Laplace noises for the transmitted Q-value for each agent.
Besides, without loss of generality, we develop DPC-
MARL under the actor-critic framework as a privacy-
preserving DTDE MARL algorithm suitable for broader
tasks with high-dimensional state-action spaces.

2) Considering the influence of additive noise on the updating
process, we prove the mean convergence of each agent’s Q-

values with the randomize of reward collection and provide
a new distribution bound of average Q-value to describe
the (p, r)-accuracy with optimal Q∗ in our algorithm. The
privacy analysis about privacy budgets shows the trade-off
between algorithm accuracy and privacy level.

3) We develop a networked social environment named as
Central Bank Monetary Policy (CBMP) and show the
effectiveness of ε-privacy DP-QD-Learning in the case
of outside eavesdropper agents. For the generality of the
DP mechanism, we also extend it as DPC-MARL for
solving a high-dimensional state-action space task, i.e.,
the Cooperative Adaptive Platoon Control (CAPC).

Notation: Let R and R+ denote the set of real numbers
and positive real numbers. Let N and N≥0 denote the set of
integer numbers and nonnegative integer numbers. 1N ∈ RN∗1
is column vector with all 1 elements. The probability space
(Ω,F) supports all random objects, where E[·] and P(·) denote
the expectation and probability on (Ω,F) respectively. The
operator || · || and || · ||∞ represent the L2 norm and L∞ norm
of the vectors and matrixs. The eigenvalues for a matrix L is
ordered as λ1(L) ≤ λ2(L) ≤ . . . ≤ λN (L). exp(x) represents
the exponetial function ex.

II. RELATED WORKS

A. Networked DTDE MARL
The first benchmark of DTDE algorithms can be traced back

to QD-learning which originally introduced consensus and
innovation update into Q-learning algorithm [21]. Afterward,
a consensus-based actor-critic algorithm was firstly proposed
in ConsensusMARL [22] for a group of networked agents
with the theoretical proof of convergence rate under the linear
approximation assumption and comparable simulations under
deep neural networks. This work further inspired extensive
research about sample efficiency and continuous control under
the DTDE scheme [23], [24]. In [14], NeurComm was proposed
for networked system control by formulating the problem as a
spatiotemporal Markov decision process. A novel differentiable
communication protocol and a spatial discount factor were
introduced to improve learning efficiency and performance.
In [25]–[27], authors investigated the exponentially decaying
mechanism of agent influence with space in networked MARL
systems, which provided theoretical guarantees for the local-
interaction global-cooperation characteristic of DTDE frame-
work. In value propagation algorithm [28], networked MARL
was converted to a constrained distributed optimization problem
and solved by primal-dual decentralized optimization method
with a non-asymptotic convergence rate of O(1/T ) with
nonlinear function approximation. In [16], a fully decentralized
MARL framework F2A2 was proposed for large-scale general
cooperative MARL settings by designing primal-dual hybrid
gradient decent updating. The theoretical analysis and empirical
results demonstrated that the F2A2 framework can improve
the flexibility and performance for a variety of on-policy and
off-policy MARL algorithms, such as SAC, TD3 and COMA.

B. Differential Privacy
Very recently, the DP technique has been widely discussed

in various communities such as machine learning, distributed
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optimization, multi-agent consensus control and so on [29]–
[40]. In [29], the DP noise was introduced in single-agent RL
to protect the private rewards of agents from being restored by
algorithms such as inverse reinforcement learning. In [30], the
theoretical analysis about the DP-stochastic gradient descent
with gradient clipping and DP noises proved the effectiveness
of DP in common deep learning algorithms and provided a
guideline for balancing the privacy, fairness and accuracy in
deep learning algorithms.

Besides, as an effective training method to improve user
data privacy, the federated learning uploads the encrypted
gradient instead of local user data, and obtains the aggregated
gradient from the trusted central server to update their local
model. However, the attackers can monitor the transimitted
parameters or attack the server to obtain the private information.
In [31]–[33], the DP mechanism was employed in parameter
transmit and guaranteed the convergence performance and
higher privacy levels of networked systems. Prochlo can further
amplify the privacy protection degree of the central server in
federated learning by randomly shuffling and anonymizing the
transmission data sources. Moreover, the DP mechanism is also
extensively investigated in multi-agent distributed optimization
and distributed control community to protect the state trajectory
of agents, such as [36]–[40]. However, it is still an open
problem to protect the privacy of MARL algorithms with DP.
For more details about DP refer to the survey [41].

III. PRELIMINARIES

A. Networked Markov Decision Process

Consider a set of networked systems consisting of N −
agents running in a common environment, where the com-
munication topology among agents is described by a graph G.
Different from CTDE methods, in this paper we focus on the
Decentralized-Training-Decentralized-Execution setting, i.e.,
all the agents collect individual rewards from the environment
and make decisions by themselves without a centralized
information collection and distribution (Fig. 1).

For generalization, the communication topology is depicted
as a randomly-switching and jointly-connected undirected graph
G = {V, E , A}. The node i ∈ V, i = 1, 2, . . . , N represents
the ith agent and the edge eij ∈ E ⊆ V ×V, i, j = 1, 2, . . . , N
represents the communication link between the nodes j and
i. The adjacency matrix A = (aij)N×N denotes the structure
of the graph, aij = 1 if j, i ∈ E , and aij = 0 otherwise.
Self-loop is not considered, i.e., aii = 0. Degree matrix is
defined as D = diag{d1, d2, . . . , dN} with di =

∑N
j=1 aij .

The Laplacian matrix satisfies L = D −A. Agent i can only
exchange information with its neighbors Ni = {j|aij = 1}.

The networked Markov Decision Pro-
cess (MDP) can be described by a 6-tuple
{S, {Ai}, P, {ri}i∈V , {Gt}t≥0, {Mij}ij∈E} : S is the
finite global state space, Ai is the finite action space for
each agent, and the reward ri(s, a) : S × Ai → R is the
random one-stage local reward of agent i whenever action
ai ∈ {Ai} is applied at state s ∈ S. As the environment is
influenced by the joint action Ajoint =

∏N
i=1Ai of all the

agents, the state transition is governed by the MDP probability

Training

Execution

Agent i

Teammates

CTDE Framework Networked DTDE Framework

Fig. 1: In CTDE (left), agent i uses all agents’ observation
in centralized training and self observation in decentralized
excution. In networked DTDE (right), agent i uses local
neighbor observation in both of training and execution.

P : S × Ajoint × S → [0, 1]. The neighbor message
mNii = {mji}j∈Ni ⊆ Mji represents the information
received by agent i from its neighbors Ni.

Definition 1. (Networked Multi-agent MDP.) A net-
worked Multi-Agent MDP is characterized as a 6-tuple
{S, {Ai}, P, {ri}i∈V , {Gt}t≥0, {Mij}ij∈E}. We assume that
the states are globally observable and the individual rewards
are local and different. At time t, each agent i chooses its own
action and get reward ri(s, a) from the environment. At the
same time, it also transmits and receives neighbor message
mNii. Then the environment updates. All local rewards are
not shared with each other.

Besides, the centralized global reward is defined as rcenter =
1
N

∑N
i=1 ri. Note that both the reward and execution are

performed locally and individually, our model fully follow
the DTDE framework.

For a policy πi : S × Ai → [0, 1] and initial state S0, the
infinite horizon discounted state-action value function of agent
i is

Qi(π)
s,a = Eπi [

∞∑
t≥0

γtri(s(t), a(t))|S0 = s,Ai0 = a, πi],

where γ ∈ (0, 1) is the discounting factor. For clear context,
we will write it as an abbreviation Qis,a below. The objective
of QD-Learning is to minimize the Bellman innovation error
and neighborhood consensus error

1

2
(Qis,a − E[ri + γmax

a′
Q(s′, a′)]−

∑
j∈Ni

aij(Q
i
s,a −Qjs,a))2.

B. Differential Privacy

For the privacy information protection of datasets, differ-
ential privacy has been shown to be a powerful benchmark
against many forms of hostile attacks and eavesdropping. The
fundamental idea of differential privacy is that, considering
an original dataset D and its adjacent dataset D′, the output
(observation) should be the same at the probability space after
running certain mapping mechanism on both datasets (Fig. 2).
In this way, the eavesdropper cannot restore the true value of
the original dataset D by any means, even if it can access the
operating mechanism and structure of the algorithm.
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Fig. 2: The outputs of two δ-adjacency datasets D and D′ with
DP noise η equal in probability.

Definition 2. ε−Differential Privacy [20]. Let δ ∈ R+, two
datasets D and D′ are δ−adjacent which satisfy the following
condition,

|Di −D′i| ≤
{δ if i = i0,

0 if i 6= i0,

for some i0, i ∈ {1, . . . , n}. Then, the randomized mechanism
M : D → O is said to be ε−Differential Privacy if for any
subset O ⊆ O, it holds that

P(M(D) ∈ O) ≤ exp(ε)P(M(D′) ∈ O). (1)

IV. DIFFERENTIAL-PRIVATE QD-LEARNING

Considering potential eavesdroppers and malicious attacks
in many social systems, it is necessary to protect the privacy
message of each agent in the networks. At the same time, many
social systems can be modeled as networked MDP problems
with finite state space and finite action space, such as opinion
networks, election, monetary policy, social welfare, and so on.
In order to highlight the effectiveness of privacy protection
mechanism in fully decentralized MARL, this paper uses tabular
QD-Learning algorithm [21] as a benchmark to reduce the
impact of various complex techniques on convergence, so as to
focus on the theoretical analysis of differential privacy noise
on Q-value convergence and optimality.

Here we propose our algorithm as DP-QD-Learning in
Algorithm 1. The main improvement is that the original privacy
data Qjs,a transmitted as neighbor message mij has been
replaced by the DP protected information Q̂js,a in Algorithm 1
line 20. In order to facilitate the discussion of the theoretical
results in section V-A, following the settings of the QD-
Learning [21], we propose the following assumptions and
properties.

Assumption IV.1. For the complete probability space (Ω,F),
denote the MDP filtration {Ft} with σ-algebra as Ft =
σ({S(s),A(s)}s≤t, {ri(s(s), a(s))}s<t). Hence, the one-stage
reward ri(s(t), a(t)) is adapted to Ft+1 for all t > 0. The
state transition probability is P(s′ = S′|Ft) = pas,s′ .

Assumption IV.2. The one-stage reward possess super-
quadratic moments which means that there exists a positive
constant ε1 > 0 with Kr ∈ R+ satisfying the condition as
follows,

E[r2+ε1
i ] ≤ Kr <∞, ∀i = 1, . . . , N.

Algorithm 1 Differential Privacy QD-Learning

1: Inputs: the environment and the reward function r(·)
2: Parameters: agents number N , noise parameters s and q,

discount factor γ, learning rate parameters a, b, τ1, τ2
3: Output: trained value function Q(s, a)
4: Initialize Qis,a and k = [k1, . . . , kN ] to be all zero matrix;

set start from random initial state S0

5: for t = 0, . . . , T do
6: for i = 1, . . . , N do
7: Sample the action ai ∼ πi(s, ai)
8: Receive reward ri(s, a), and count the sampling times

ki of the state-action pair (s, ai)
9: Update the gains αk and βk with ki as (3)

10: end for
11: The environment receives the joint action ajoint =∏N

i=1 a
i and updates into the new state s′

12: for i = 1, . . . , N do
13: Get state s′

14: Compute ιi = siq
t
i , sample ηi ∼ Lap(0, ιi), accord-

ing to Equation (5)
15: Update Q̂is,a ← Qis,a + ηi
16: end for
17: /* Message transmission.
18: for i = 1, . . . , N do
19: Receive neighbor messages Q̂js,a, j ∈ Ni
20: Update Qis,a ← Qis,a − βk

∑
vj∈Ni(Q

i
s,a − Q̂js,a) +

αk(ri(s, a) + γmaxa′ Q
i
s′,a′ −Qis,a)

21: end for
22: Update state s← s′

23: end for
24: Return the trained Q(s, a) function

Assumption IV.3. The communication graph G(t) =
{V, E(t), A(t)} is undirected connected and balance graph
for all t > 0.

Proposition IV.4. For a connected undirected graph G, the
eigenvalues of the adjacency matrix A satisfy that λ1(A) = 0,
λN (A) ≥ . . . ≥ λ2(A) > λ1(A).

The update process of the Q-value for each state-action pair
(s, a) in our algorithm evolves as

Qis,a(t+ 1) = Qis,a(t)− βs,a(t)
∑

vj∈Ni(t)

(Qis,a(t)− Q̂js,a(t))

+ αs,a(t)(ri(st, at) + γ max
a′∈A

Qis′,a′(t)−Qis,a(t)), (2)

where the weight sequences αs,a(t) and βs,a(t) are Ft(t)-
adapted processes. For the state-action pair (s, a) at time t,
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they satisfy the following equations,

αs,a(k) =
{ a

(k + 1)τ2
if t = Ts,a(k),

0 otherwise,

βs,a(k) =
{ b

(k + 1)τ1
if t = Ts,a(k),

0 otherwise,

(3)

where a, b, τ1 ∈ ( 1
2 , 1], τ2 ∈ (0, τ1 − 1

2+ε1
) are positive

constants, and t = Ts,a(k) represents the k + 1-th sampling
time which is finite almost surely for k ∈ N≥0. The transmitted
message is designed as

Q̂is,a(t) = Qis,a(t) + ηi(t), (4)

where the additive Laplace noise is designed as

ηi(t) ∼ Lap(0, ιi(t)), and ιi(t) = siq
t
i , qi ∈ (0, 1), (5)

with si and qi being positive constants.

Remark 1. Our algorithm update follows the form of inno-
vation + consensus algorithm [21], which is a much more
general framework. When βs,a(t) = 0, the update 2 is reduced
as the traditional single-agent TD-error reinforcement learning
algorithm [42]. Moreover, if αs,a(t) = 0, the update (2)
is reduced to the classical multi-agent consnesus control
algorithm [38]. With the paramters τ1 and τ2 being selected
to satisfy limt→∞

β(s,a)(t)

α(s,a)(t)
= ∞, the consensus factor will

dominate the update process and leads the Q-table of all
agents to the optimal convergence asymptotically as mentioned
in (M.5) in [21].

V. THEORETICAL RESULTS

A. Convergence Analysis
In this section, we will show the asymptotical convergence

of the DP-QD-Learning algorithm. First, we will demonstrate
the mean square convergence of Qi. Second, we will show the
convergence of the expectation E[Qi].

To this end, we define the local QD operator for the (s, a)-
pair of agent i as

Yis,a(Q) = E[ri(s, a)] + γ
∑
s′∈S

pas,s′ max
a′∈A

Qs′,a′ ,

which has the fixed point defined as

Qi∗s,a = E[ri(s, a)] + γ
∑
s′∈S

pas,s′ max
a′∈A

Qi∗s′,a′ ,

where Qi∗ = [Qi∗s,a] ∈ R|S×A|. Then the updating law (2) can
be rewritten as

Qis,a(t+ 1) = Qis,a(t)− βs,a(t)
∑

vj∈Ni(t)

(Qis,a(t)− Q̂js,a(t))

+ αs,a(t)(Yis,a(Qi(t))−Qis,a(t) + viS,A(Qnt )), (6)

where

viS,A(Qnt ) = ri(st, at) + γ max
a′∈A

Qis′,a′(t)− Yis,a(Qi(t))

= ri(st, at)− E[ri(s, a)]

+ γ max
a′∈A

Qis′,a′(t)− γ
∑
s′∈X

pas,s′ max
a′∈A

Qi∗s′,a′

is a magnifying operator which satisfies

E[viS,A(Qnt )|Ft] = 0,

E[||viS,A(Qnt )||2|Ft] ≤ Kv <∞.

Define the piecewise updating operator zis,a for agent i at the
updating time T is,a(k) as

zis,a(k) = Qis,a(t), for t = T is,a(k), k = 1, 2, . . . .

Then from (6) we have

zis,a(k + 1) =zis,a(k) + βs,a(k)
∑

vj∈Ni(k)

(zis,a(k)− zjs,a(k))

+αs,a(k)(Yis,a(zis,a(k)− zis,a(k) + viS,A(Qnk ))

+βs,a(k)
∑

vj∈Ni(k)

ηj(k).

It can be written in the vector form as

zs,a(k + 1) = (IN − β(k)L(t)− α(k)IN )zs,a(k) (7)
+ α(k)(Ys,a(zs,a(k)) + v(k)) + β(k)A(k)η(k),

where

Ys,a(zs,a(k)) = col[Yis,a(zis,a(k))], i = 1, . . . , N,

v(k) = col[viS,A(Qnk )], i = 1, . . . , N.

Then we will show the mean square convergence theorem for
the DP-QD-Learning algorithm.

Theorem V.1 (Consensus in mean square a.s.). Consider the
undirected connected graph G, under Assumptions IV.1-IV.3, for
every (s, a)-pair, the Q-value of DP-QD-Learning can achieve
asymptotically consensus in mean square almost surely (a.s.)
as

lim
t→∞

E[(Qis,a(t)−Qjs,a(t))2] = 0, i, j = 1, . . . , N. (8)

Proof. To prove Theorem V.1, we first establish the following
lemma for a general case. The proof of Lemma 1 can be found
in Appendix IX.

Lemma 1. For each state-action pair (s, a), let ys,a(t) denote
the {Ft} adapted process evolving as

ys,a(t+ 1) = (IN − β(t)L(t)− α(t)IN )ys,a(t)

+ α(t)v(t) + β(t)A(t)η(t), (9)

where the weight sequences {α(t)} and {β(t)} are given by
(3) and {v(t)} is an {Ft+1} adapted magnifying process. Then
we have limt→∞ E[(yis,a(t) − yjs,a(t))2] = 0, i, j = 1, . . . , N
as t→∞ a.s.

Define $i
s,a(k) = zis,a(k)− yis,a(k), with (7) and (29), we

have

$s,a(k + 1) =(IN − β(k)L(k)− α(k)IN )$s,a(k)

+ αs,a(k)Yis,a(zis,a(k)). (10)

As Yis,a(zis,a(k)) ≤ G <∞ is bounded, then we have

$s,a(k) ≤ (1− w3αs,a(k))$s,a(k) + αs,a(k)G.
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With Lemma 3.1 (Polyak, 1987) in [40] , we can conclude
that limk→∞$s,a(k) = 0, which implies that

limE[(zis,a(k)− zjs,a(k))2] = limE[(yis,a(k)− yjs,a(k))2]

=0 (11)

as k →∞. Since zis,a(k) is the piecewise process of Qis,a(k)
and t → ∞ as k → ∞, it is clear that the DP-QD-Learning
can achieve consensus in mean square a.s.

Then we will show that the expectation of Qis,a(t) will
achieve consensus. Because only the Laplacian noises η
with the expectation of 0 is introduced into the transmission
information Q̂s,a(t), it is easy to get the conclusion of
convergence of the expectation E[Qi] as Lemma 5.2 in [21].

Theorem V.2 (Consensus in expectation). Consider the
undirected connected graph G, under Assumptions IV.1-IV.3, for
every (s, a)-pair, the Q-value of DP-QD-Learning can achieve
consensus in expectation almost surely as

lim
t→∞

E[Qis,a(t)− Q̄s,a(t)] = 0, i, j = 1, . . . , N, (12)

where Q̄s,a(t) = 1
N

∑N
i=1Q

i
s,a(t) is the average value of Qis,a

for all i ∈ N at time t.

The proof of Theorem V.2 can be found in Appendix X.

B. The (p, r)-accuracy Analysis

Due to the disturbance of random noise in the DP mech-
anism, the convergence of Q-value in DP-QD-Learning may
not precisely converge to the optimal value Q∗, but to its
neighborhood. The accuracy of convergence value in DP-QD-
Learning algorithm can be described by its statistical law. In
this section, we will demonstrate its distribution character with
theoretical analysis for the bound of expectation and variance.

In order to compare the convergence performance of fully
decentralized algorithms and centralized algorithms, we assume
that there exists a center that can collect all agent information
and conduct centralized training. Define the centralized QD
operator Ȳ : R|S×A| 7→ R|S×A|, whose (s, a)-th component
Ȳs,a : R|S×A| 7→ R is

Ȳs,a(Q) =
1

N

N∑
i=1

E[ri(s, a)] + γ
∑
s′∈S

pas,s′ max
a′∈A

Qs′,a′ .

for all Q ∈ R|S×A|. Informally, Ȳ(·) is the average of the
local QD operators, i.e., for each Q ∈ R|S×A| and state-action
pair (s, a), we have

Ȳs,a(Q) =
1

N

N∑
i=1

Yis,a(Q). (13)

Lemma 2 (Contraction Lemma [21]). The centralized QD
operator is a contraction process. Specifically, we have

||Ȳ(Q)− Ȳ(Q′)||∞ ≤ γ||Q−Q′||∞,∀Q,Q′ ∈ R|S×A|.

Define the unique fixed point of Ȳ(·) as Q∗. Define the
average value of Qs,a(t) as Q̄s,a(t) = 1

N 1TNQs,a(t).

From the updating law (6), for each state-action pair (s, a)
we have

Q̄s,a(t+ 1) =(1− αs,a(t))Q̄s,a(t) + αs,a(t)[v̄s,a(t)

+
1

N

N∑
i=1

Yis,a(Qit)] +
βs,a(t)

N
1TNA(t)η(t), (14)

where v̄s,a(t) = 1
N 1TNvs,a(t). Note that the connected graph G

satisfies 1TNL = 0 . Then the equation (14) can be written as

Q̄s,a(t+ 1) =(1− αs,a(t))Q̄s,a(t) + αs,a(t)[v̄s,a(t) + ε̄s,a(t)

+Ȳs,a(Q̄t)] +
βs,a(t)

N
1TNA(t)η(t),

where the residual term is defined as

ε̄s,a(t) =
1

N

N∑
i=1

(Yis,a(Qit)− Yis,a(Q̄t)). (15)

As the operators Yis,a(·) are Lipschitz, we have

|ε̄s,a(t)| ≤ l1
N∑
i=1

||Qit − Q̄t||, (16)

where l1 is the Lipschitz constant. Moreover, we have the
following equations as:

E[ε̄2s,a(t)] ≤l21E[(

N∑
i=1

(Qi
s,a(t)− Q̄s,a(t)))2]

=l21E[

N∑
i=1

Qi
s,a(t)Qj

s,a(t) + C2
N Q̄

2
s,a(t)

− 2

N∑
i=1

(Qi
s,a(t) +Qj

s,a(t))Q̄s,a(t)]

+ E[

N∑
i=1

(Qi
s,a(t)− Q̄s,a(t))2]

=l21E[

N∑
i=1

Qi
s,a(t)Qj

s,a(t) + (C2
N − 2N(N − 1))Q̄2

s,a(t)]

+ E[
N∑
i=1

(Qi
s,a(t)− Q̄s,a(t))2].

As Qis,a(t) and Q̄s,a(t) are bounded which is proved in Lemma
5.1 in [21], consider the mean square convergence E[(Qis,a(t)−
Q̄s,a(t))2] = 0, then we have E[ε̄2(t)] = K ′ <∞ is bounded.

Consider the auxiliary {Ft} adapted process {zs,a(t)}, such
that for all t,

zs,a(t+ 1) =
(
1− αs,a(t)

)
zs,a(t)

+ αs,a(t)
(
v̄s,a(t) + ε̄s,a(t)

)
. (17)

Define the error as Q̃s,a(t) = Q̄s,a(t)− zs,a(t)−Q∗s,a, with
(14) and (17) we have

Q̃s,a(t+ 1) =
(
1− αs,a(t)

)
Q̃s,a(t) +

βs,a(t)

N
1TNA(t)η(t)

+ αs,a(t)(Ȳs,a
(
Q̄t)− Ȳs,a(Q∗)

)
. (18)
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Theorem V.3. Consider the undirected connected graph G,
under Assumptions IV.1-IV.3, for every (s, a)-pair, if the average
value Q̄s,a(t) evolves as follows,

Q̄s,a(t+ 1) =(1− αs,a(t))Q̄s,a(t) + αs,a(t)[v̄s,a(t)

+
1

N

N∑
i=1

Yis,a(Qit)] +
βs,a(t)

N
1TNA(t)η(t),

the expectation of Q̄s,a(t) will converge to the optimal value
Q∗, i.e., limt→∞ supE[||Q̄s,a(t) − Q∗||∞] = 0 a.s. for all
(s, a)-pairs.

Proof. Computing the expectation of (18) for both sides implies
that

E[Q̃s,a(t+ 1)] =
(
1− αs,a(t)

)
E[Q̃s,a(t)]

+ αs,a(t)E[
(
Ȳs,a(Q̄t)− Ȳs,a(Q∗)

)
].

As Qs,a(t) is bounded and Q∗ is a fixed constant, there must
exist an a.s finite random variable R, such that

R = lim
t→∞

supE[||Q̄s,a(t)−Q∗ − zs,a(t)||∞]. (19)

Then we verify that R = 0 by constructing a contrary.
Assume that R 6= 0, then there exists an event C of positive
measure such that R > 0 on C. Let δ > 0 be a constant
satisfying γ(1 + δ) < 1. Then there exists a random time tδ
satisfying

E[||Q̄t −Q∗ − zs,a(t)||∞] < R(1 + δ)

on the event C a.s for all t ≥ tδ . Consequently, we have

|E[Q̃s,a(t+1)]| ≤
(
1−αs,a(t)

)
|E[Q̃s,a(t)]|+αs,a(t)γ(1+δ)R.

Clearly, with the pathwise application of Proposition 4.1 in
[21], it means that

P
(

lim
t→∞

sup |E[Q̃s,a(t)]| ≤ γ(1 + δ)R
)
≥ P(C) > 0.

Since γ(1 + δ) < 1, we have

lim
t→∞

sup |E[Q̃s,a(t)]| < R a.s. on event C. (20)

Clearly, (19) and (20) are contradictory. Then we have

lim
t→∞

supE[||Q̄t −Q∗ − zs,a(t)||∞] = 0, (21)

which means that the expectation of Q̃s,a(t) will converge to
0 as t→∞ a.s.

Then we will investigate the variance of Q̃s,a(t). With (18),
we have

var
(
Q̃s,a(t+ 1)

)
= E[

(
Q̃s,a(t+ 1)

)2
]−
(
E[Q̃s,a(t+ 1)]

)2
≤ E[

(
Q̃s,a(t+ 1)

)2
]

≤ E[

((
1− αs,a(t) + γαs,a(t)

)
Q̃s,a(t) +

βs,a(t)

N
∗ 1TNA(t)η(t)

)2

]

=
(
1− αs,a(t) + γαs,a(t)

)2E[
(
Q̃s,a(t)

)2
]

+
βs,a(t)2

N2
E[
(
1TNA(t)η(t)

)2
]

+
2
(
1− αs,a(t) + γαs,a(t)

)
βs,a(t)

N
E[Q̃s,a(t)1TNA(t)η(t)]

=
(
1− αs,a(t) + γαs,a(t)

)2E[
(
Q̃s,a(t)

)2
]

+
βs,a(t)2

N2
E[
(
1TNA(t)η(t)

)2
], (22)

where A(t) = D(t) − L(t). Then we can conclude that

var
(
Q̃s,a(t)

)
≤ W0s

2
i q

2t−2
i

1−(
Mt
q2
i

)t

1−Mt
q2
i

, where Mt = (1 −

αs,a(t) +γαs,a(t))2 ∈ (0, 1) and W0 =
βs,a(0)2

N2 λN (D̄). More
details refer to Appendix XII.

Theorem V.4 (The (p, r)-accuracy). The average Q-value
Q̄s,a(t) of each state-action pair (s, a) in the DP-QD-Learning
algorithm achieves (p,r)-accuracy with its expectaion equals

to Q∗ and r =

√
var(Q̃s,a(t))√

p .

Proof. Let Q̆s,a(t) = Q̄s,a(t)−Q∗. As t→∞, we have the
expectation of Q̆s,a(t) as

E[Q̆s,a(t)] = E[Q̃s,a(t) + zs,a(t)] = 0. (23)

Similarly, the variance of Q̆s,a(t) is

var(Q̆s,a(t)) = E[Q̆2
s,a(t)]−

(
E[Q̆s,a(t)]

)2
≤ E[

(
Q̃s,a(t) + zs,a(t)

)2
]

≤ 2E[Q̃2
s,a(t)] + 2E[z2

s,a(t)]

= 2var
(
Q̃s,a(t)

)
(24)

By using Chebyshev’s inequality, we obtain

P(|Q̆s,a(t)| ≤ r) = 1− P(|Q̆s,a(t)| > r)

≥ 1− 2var(Q̃s,a(t))

r2
. (25)

Choosing r =

√
2var(Q̃s,a(t))√

p , we have 1 − P(|Q̆s,a(t)| >
r) ≥ 1− p, which implies that the DP-QD-Learning algorithm
achieves (p, r)-accuracy with 0. As Q∗ is a constant, we can
finally get the distribution of Q̄s,a(t) follows the (p, r)-accuracy

with its expectaion equals to Q∗ and r =

√
2var(Q̃s,a(t))√

p .

C. Privacy Analysis

Consider that there exists an external eavesdropper which
can access all the transmission information Q̂i among agents.
The DP-QD-Learning algorithm aims to protect the real
information Qi of each agent from being restored by the
external eavesdropper using observations Q̂i.
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Theorem V.5. The DP-QD-Learning with the decaying Laplace
noise η designed as (5) is ε-differentially private. The privacy
degree satisfies ε = max{εi} = max{ |δ|

siqti
}, i = 1, . . . , N ,

where δ is the adjacency bound in Defination 2.

Proof. Consider a pair of δ-adjacent sets Qs,a(t) =
[Q1

s,a(t), . . . , QNs,a(t)] and Q′s,a(t) = [Q1′

s,a(t), . . . , QN
′

s,a(t)] as
the private dataset. Let the observation set be Q̂s,a(t). Then
the allowable set for any t > 0 can be defined as

R
(l)
t = {ηt ∈ Ωt|M (l)(Qs,a(t)) ∈ Ot}, l = 1, 2, (26)

where Ωt = Rn is the sample space at time t, and Ot ⊆ Rn
is a subset of the observation set O. As the random virable
observation is only determined by the noise η(t), then we have

P{ηt ∈ Ωt|M (l)(Qs,a(t)) ∈ Ot} =

∫
R

(l)
t

fn,t(η
(l)
t )dη

(l)
t , l = 1, 2,

where fn,t is the n-dimensional joint Laplace p.d.f at time t
given by

fn,t(ηt) =

N∏
i=1

L(ηi; ιi). (27)

Here we define a bijection between R
(1)
t and R

(2)
t to sim-

plify the analysis. Without loss of generality, we define
two sets of noise η

(1)
t = {η(1)

1 (t), . . . , η
(N)
1 (t)} and η

(2)
t =

{η(1)
2 (t), . . . , η

(N)
2 (t)} as

η
(2)
i (t) =

{η(1)
i (t)+∆ηi(t) if i = i0,

0 if i 6= i0,

Clearly, we have Qs,a(t)+η
(1)
t = Q′s,a(t)+η

(2)
t , i.e., M(Q) =

M ′(Q′), which is the strictest case satisfying R
(1)
k = R

(2)
k .

Then we can conclude that for any noise selection η(1)
t , there

always exists a unique bijection η
(2)
t satisfing η

(2)
t ∈ R

(2)
k .

The converse argument is also true. As ∆ηi(t) is fixed and
independent with η(2)

t , we have

P{ηt ∈ Ωt|M (2)(Qs,a(t)) ∈ Ot} =

∫
R

(1)
t

fn,t(η
(1)
t +∆ηi(t))dη

(1)
t .

Then we have

P{M (1)(Qs,a(t)) ∈ Ot}
P{M (2)(Qs,a(t)) ∈ Ot}

=

∫
R

(1)
t
fn,t(η

(1)
t )dη

(1)
t∫

R
(1)
t
fn,t(η

(1)
t + ∆ηi(t))dη

(1)
t

=

∫
R

(1)
t

∏N
i=1 L(η

(1)
i (t); ιi(t))∫

R
(1)
t

∏N
i=1 L(η

(1)
i (t) + ∆ηi(t); ιi(t))

≤e
|∆ηi(t)|
ιi(t) , (28)

which means that εi = |∆ηi(t)|
ιi(t)

.
As Qs,a(t) and Q′s,a(t) are assumed to be δ-adjacent, we

have |∆ηi(t)| = |δ|, which implies that εi = |δ|
siqti

. Since the
smaller the degree of privacy, the better the privacy protection
performance, the privacy degree of the system ε equals to the
maximum of all agents’ privacy degree max{εi}.

VI. EXPERIMENTAL SETUP

In recent years, some benchmark environments have been
developed for MARL experiment such as the particle en-
vironment [6], Hanabi [43], and the StarCraft Multi-agent
Challenge (SMAC) [3]. However, few of them are developed
for networked social systems. For this reason, we design a
toy environment called the CBMP environment to evaluate the
convergence and the privacy preserving of DP-QD-Learning.
Moreover, in order to show the generalization potential of the
DP mechanism in a broader scope of MARL algorithms, we
extend a deep MARL algorithm ConsensusMARL [22] to DPC-
MARL, which employs our DP mechanism in the transmitted
parameters of the neural networks of the critic. The empirical
experiments of DPC-MARL was implemented on a modified
CAPC environment [14], [15] with a traffic simulator.

A. The Central Bank Monetary Policy Environment

In this scenario, we consider a common networked social
system: the central bank monetary policy regulation. The
central bank adjusts the fiscal strategy to urge citizens to
change their savings, so as to achieve the expected purpose of
tightening or increasing monetary liquidity. Intuitively, when
each citizen perceives the monetary policy, due to their own
private information such as age, job, health status, and education
level, they have different scores (opinions) for the actions and
receive the personalized rewards after taking actions. Moreover,
people do not only update their strategies based on their
rewards but are also influenced by their neighbors’ opinions.
Finally, after sufficient update steps and exchange of opinions,
everyone’s strategies tend to be consistent, so that they show
stable group behavior.

The globally observable environment S is the fiscal strategy
of the central bank, and the agent is a citizen. The actions
Ai that each agent can take is to adjust its own savings
amount, and the personalized and different rewards ri(s, a)
are long-term expected interest income. The Q-table represents
citizens’ opinions on monetary policy. The eavesdroppers are
assumed to be external members of the team and can monitor
the communication channel between agents to obtain the Q
value. Clearly, there is no centralized controller like CTDE
algorithms to collect information and send specific instructions
to each agent in CMBP. Besides, the information exchanged
and transmitted between citizens is highly related to personal
privacy information, which obviously needs to be protected.

From a structuralist perspective, any group system such as
business relations and international relations can be described
as the sum of individual relationships, which can be illustrated
by weight topologies. Therefore, we adopt the network to
formalize the exchange and influence of opinions among people.
Commonly, this opinion relationship of human communities
is modeled as small-world networks or scale-free networks,
most of which are randomly connected graphs with specific
degree distribution. We provide Fig. 3 to illustrate the CBMP
environment.

Although the real monetary policy regulation usually involves
a variety of benchmark interest rates, hundreds of millions of
participating members, and various influencing factors, we can
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Fig. 3: CMBP Environments.

reasonably simplify the environmental state into interest rate
increasing or reducing channel with finite state space |S| = 2.
And the action of agents can be simplified as increasing or
decreasing the amount of their savings with finite action space
|Ai| = 2. Without the loss of generality, we randomly generate
a connected graph of N = 20 agents as the communication
topology in each episode. Therefore, the number of state-
action pairs is 4 and Qi is a R2×2 matrix. 8 state transition
probabilities were chosen independently by uniformly sampling
the interval [0, 1] satisfying that

∑
p(·|s, a) = 1. For each agent

i, the random one stage reward ri(s, a) is assumed to follow a
Gaussian distribution with variance 20, whose expectation
E[ri(s, a)] for each (s, a) pair is ramdomly sampled over
the interval [50, 400]. The discounting factor was taken to
be γ = 0.7. The weight sequence was set as τ1 = 1 and
τ2 = 0.2. We set the decaying Laplace noise in (5) as si = 10
and qi = 0.99, while the undecaying noise are set as si = 10
and qi = 1.

B. The Cooperative Adaptive Platoon Control Environment

In the above theoretical analysis of DP-QD-Learning, for
highlighting the impact of privacy protection, we have reason-
ably simplified the networked social problem into a tabular
Q-learning task. In this subsection, we consider a more concrete
networked social system problem with high-dimensional state-
action space to illustrate the generalization of the proposed DP
mechanism.

Note that with the rapid development of vehicle perception
equipments, vehicle to vehicle (V2V) communication and
computer vision algorithms, cooperative autonomous vehicles
(CAV) have shown great potential in reducing congestion and
energy consumption [44], [45]. Here we consider a common
scenario of multiple CAVs running in a single lane platoon
and formalize it as a CAPC environment. The main objective
of CAPC is to simultaneously minimize the car-following
headway and the velocity fluctuation of each CAV in the
platoon, which can improve road traffic rate and reduce fuel
consumption caused by frequent acceleration changes. In
the CAPC problem, the communication range is limited on
the spatial scale and difficult to afford centralized control
strategy. Meanwhile, the information transmitted by CAVs may
implicitly or explicitly expose their private information, such
as destination, communication protocol, algorithm mechanism,
etc., which need to be carefully protected. The experiment
platform is based on the simulation of urban mobility (SUMO),

(a) Catch-up CAPC

(b) Slow-down CAPC

Fig. 4: CAPC Environments.

TABLE I: HYPERPARAMETERS IN CAPC

Hyperparameter Value

Safety headway hi ≥ 1m
Safety velocity vi ≤ 30m/s

Safety acceleration |ai| ≤ 2.5m/s2

Stop headway in OVM hstop = 5m
Full-speed headway in OVM hfull = 35m

Collision penalty (hi,t < 1m) 1000
Additional cost for collisions 5(2hstop − hi,t)2

which is wildly used in the field of traffic research to simulate
various car-following models and visualize the dynamics of
the CAV platoon.

The V2V communication topology is set as bidirectional
following [46], which means that each CAV can share messages
with both neighbors in front and back. Following the optimal
velocity model (OVM) adopted in [14], the states of CAV Si
are consist of its headway hi,t ∈ R+, velocity vi,t ∈ R+, and
acceleration ai,t ∈ R+. The longitudinal control actions Ai
are the pairs of headway gain α◦i and velocity gain β◦i with
four optional levels {(0, 0), (0, 0.5), (0.5, 0), (0.5, 0.5)}. The
control interval is set as 0.1s to avoid too frequent accelaration
switches, and the overall control time is 60s. The cost is
set as (hi,t − h∗t )

2 + (vi,t − v∗t )2 + 0.1a2
i,t, where h∗t and

v∗t are the target headway and velocity of the CAV platoon.
Considering the safety of practical driving, we set additional
safety constraints and collision costs as shown in Table I.
Here we consider two scenarios, the catch-up CAPC and the
slow-down CAPC.

In the catch-up CAPC, the initial states of all CAV except the
second CAVs are equal to the target states, which means that
vi,0 = v∗t = 15m/s and hi,0 = h∗t = 20m,∀i 6= 2. The states
of the third CAV are set as v2,0 = 10m/s and h2,0 = kcuh

∗
t

with kcu ∈ [3, 4]. The objective of the catch-up CAPC is to
make the last seven CAVs left behind catch up with the first
car in the platoon.

In the slow-down CAPC, the initial headways of all CAVs
are equal to the target headway and the velocities are equal to
a multiple of the target velocity, which means that hi,0 = h∗t =
20m and vi,0 = ksdv

∗
t with ksd ∈ [1.5, 2.5] and v∗t = 15m/s.

The objective of the slow-down CAPC is to reduce the CAV
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(a) DP vs non-DP vs centralized non-DP (b) Decaying Laplace noise convergence (c) Decaying Laplace noise DP
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Fig. 5: The learning results in the CMBP task.

platoon from the initial fast driving to the target speed in the
first 30s and keep it. The collision avoidance is more important
in the slow-down CAPC than the catch-up CAPC.

To illustrate the tradeoff between privacy and performance,
we set three levels of DP noise gain as sgain = {0.01, 0.1, 1}.
In each update, the average weight of the critic neural network
is calculated as the base scale si. Then, the base scale si is
multiplied by the noise gain sgain and decaying gain qti as
the variance of DP noise in this round of communication, i.e.,
ηi(t) ∼ Lap(0, ιi(t)) with ιi(t) = sgainsi(t)q

t
i . Here we set

qi = 1 as undecaying noise for better privcacy performance.

C. Baselines and algorithm setup
CMBP Task. Since there is no previous article to study the

cross-field of networked MARL and privacy protection, we set
the baselines of CMBP as a centralized Q-Learning algorithm
and the non-privacy protection QD-Learning proposed in [21].
We aim for proving that the DTDE framework and the DP
mechanism can improve the robustness of MARL algorithms
without losing performance, rather than obtaining a higher
score in the test.

The centralized algorithm is named as Center-QD following
the update as

Qcens,a (t+ 1) = Qcens,a (t) + αs,a(t)(
1

N

N∑
i=1

ri(st, at)

+ γ max
a′∈A

Qcens′,a′(t)−Qcens,a (t)),

where Qcens,a represents the Q-value of the state-action pair (s, a)
of the centralized algorithm Qcen. Here Center-QD can be
regarded as the existence of a center to collect the information
of all agents for centralized training, and select the same action
for all agents. All parameters settings of DP-QD-Learning, QD-
Learning, and Center-QD are the same. For each execution,
we set the maximum step of updates as 10000.

TABLE II: HYPERPARAMETERS OF ALGORITHM 2

Hyperparameter Value

Training steps 1Million
Discount factor γ = 0.99
Random seeds 5

Learning rate of actor 5× 10−4

Learning rate of critic 2.5× 10−4

Batch size |B| = 60
DP noise gain sgain = {0.01, 0.1, 1}

CAPC Task. In ConsensusMARL [22], Zhang considered
the similar settings of a DTDE algorithm and proposed an actor-
critic MARL algorithm with linear function approximation
to handle the high-dimensional state-action pairs. The critic
follows the consensus update by passing the parameters µ̃it and
ṽit of the critic networks instead of directly passing Q-values.
However, when the malicious agent obtains the structure of
the critic network, it can still recover the privacy information
of the agents.

Motivated by this, we propose DPC-MARL (Alg. 2 in
Appendix XIII) by adding Laplace DP noise to the transmitted
messages of ConsensusMARL. Here we set the baseline
algorithm in CAPC as ConsensusMARL [22]. Both algorithms
are applied to A2C agents. The critic networks use 3 layer
fully-connected networks, which have 64 units in the hidden
layer. The model is trained over 1M steps with discount factor
γ = 0.99 in each episode. The hyperparameter details are in
Table II.

VII. RESULTS

A. Results of the CMBP task

First, we investigate the performance of DP-QD-Learning,
QD-Learning, and Center-QD in the CMBP task. Fig. 5 shows
the Q-values of each state-action pair (s, a) at 5 randomly
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(a) CAPC catch up (b) CAPC slow down

Fig. 6: CAPC learning curves.

selected agents over the networks. Note that the lines and
shade show the average value and standard deviation across 5
execution episodes. Each agent collects different rewards and
evolves in different trajectories, but eventually converges to
the same value under the update mechanism of innovation+
consensus.

In particular, we compare Q-values of a random agent when
it follows the DP-QD-Learning with QD-Learning and Center-
QD in Fig. 5a. It can be observed that the DP-protected
fully decentralized algorithm reaches a similar performance
with unprotected QD-Learning and the centralized algorithm.
Fig. 5b shows that the proposed DP-QD-Learning algorithm
successfully ensures the stability and mean square convergence
of Q values of all state-action pairs (s, a) with decaying
DP noises. With 103 times running under the same setup
in DP-QD-Learning, the empirical results of the distribution
of the convergence error Q̃ has been provided in the form
of histogram. Due to space limitation, we only show the
distribution histogram of Qis2,a2 in the Fig. 5d. The Q value
of other state-action pairs also conforms to a similar normal
distribution. Besides, to illustrate the effectiveness of privacy
protection, we compare the transmitted information Q̂is,a(t)
and the real privacy information Qis,a(t) in Fig. 5c, which
are plotted as the dotted line and the solid line in the figure
repectively. Clearly, eavesdroppers cannot restore the true
privacy Q-value of the agents according to the one-step
transmission Q-value in communication channels.

However, decaying DP noise may decrease to 0 after massive
updates, resulting in the risk of privacy leakage. Consequently,
we revise the decaying scalar qi in the Laplace noise (5) into
constant 1 as the undecaying DP mechanism. As shown in Fig
5e and Fig.5f, the nondecaying DP mechanism does not change
the property of convergence in mean square, but significantly
improves the effect of privacy protection by selecting the
appropriate noise variance si. In addition to the Laplace noise
paradigm used in this paper, other kinds of noise mechanisms in
the DP community are also suitable for DP-MARL algorithms,
such as Gaussian mechanism, exponential mechanism, and so
on [30]. The choice of the type of privacy noises will not bring
significant changes to the convergence analysis of this paper
but only affect the ε-privacy degree.

TABLE III: Final Rewards of the CAPC Tasks

Noise Level Rewards
CAPC Catch-up CAPC Slow-down

Non-DP MARL sgain = 0 −519.68± 58.20 −1585.82± 190.37
DP-MARL sgain = 0.01 −187.77± 64.82 −1450.16± 386.11
DP-MARL sgain = 0.1 −1296.81± 347.86 −2875.79± 291.53
DP-MARL sgain = 1 None None

B. The results of CAPC

In CAPC scenarios, we take the rewards of 1 Million training
steps as the evaluation. Fig. 6 demonstrates the learning curves
of rewards with different noise levels. The training rewards of
both the CAPC catch-up task and the CAPC slow-down task
can converge to stable values. In 6a, DPC-MARL with the
noise level si = 0.01 outperforms other noise levels and gets
the closest performance to the non-protected baseline algorithm.
In 6b, the DP-protected MARL algorithm with the noise level
si = 0.01 also gets a similar performance to the baseline. The
above results show that the DP mechanism can also effectively
protect the privacy of networked agents in complex tasks. In
addition, we have been surprised to find that appropriate noise
can provide additional rewards improvement slightly. This kind
of performance improvement may be due to the random noise
in the update, which helps exploration and avoids the local
optimum as investigated in [47], [48].

In addition, we can observe that the noise levels sgain
significantly affect the variance of the rewards in steps. Both
CAPC tasks showed the same trend, that is, the greater the
privacy noise, the greater the variance of rewards. Note that
the curve with noise level sgain = 1 vanished because the
large noise disturbs the real parameters of the critic value
seriously, resulting in the collapse of the training. Meanwhile,
the algorithms with a higher DP noise level sgain = 0.1 obtain
fewer rewards than the algorithms with lower DP noise. It is
due to the fact that the DP noise is significantly larger than
the approximation parameters of the critic, which leads to the
dominant position of DP noise in the transmitted information
and the bias. However, since the expectation of DP noise is
0, it can be found that the reward curves are still stable and
converge after smoothing the rewards of multiple steps. We
also evaluate the rewards of both CAPC tasks in Tab. III. It
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can be observed that the CAPC catch-up task usually collects
more rewards than the slow-down task. Perhaps because the
CAV in the slow-down task suffers more collision risks and
penalties.

VIII. CONCLUSION

We have studied networked MDP for social system problems
under the fully decentralized MARL framework. Particularly,
we consider potential eavesdroppers and attackers in the
environment and design an ε-differential private DP-QD-
Learning algorithm to protect each agent’s private information
with the decaying additive Laplace noise. We have proved
the convergence and distribution with theoretical analysis and
demonstrated the promising performance of the algorithm in a
newly developed social problem environment CBMP. Besides,
by extending our DP mechanism to ConsensusMARL, we
verify the effectiveness of the DP-based MARL algorithm on
complex task CAPC with high-dimensional state-action space.
Simulation results show that the DP mechanism can ensure the
convergence of the MARL algorithm with privacy protection
and improve the performance with appropriate noise level. Our
attempt is the first theoretical work to consider privacy in
fully decentralized MARL, hoping to provide a rethink for
developing resilient and secured MARL algorithms.

IX. PROOF OF LEMMA 1
Lemma 3. For each state-action pair (s, a), let ys,a(t) denote
the {Ft} adapted process evolving as

ys,a(t+ 1) = (IN − β(t)L(t)− α(t)IN )ys,a(t)

+ α(t)v(t) + β(t)A(t)η(t), (29)

where the weight sequences {α(t)} and {β(t)} are given by
equation (3) in the full paper and {v(t)} is an {Ft+1} adapted
magnifying process. Then we have limt→∞ E[(yis,a(t) −
yjs,a(t))2] = 0, i, j = 1, . . . , N as t→∞ a.s.

Proof. Define a positive definite function as

P (t) =

N∑
i=1

∑
vj∈Ni(t)

aij(t)(y
i
s,a(t)− yjs,a(t))2. (30)

Then the matrix form of (30) is P (t) = yTs,a(t)L(t)ys,a(t).
Following by (29), we have:
P (t+ 1)

=yTs,a(t+ 1)L(t)ys,a(t+ 1)

=yTs,a(t)ΨT (t)L(t)Ψ(t)ys,a(t) + α(t)yTs,a(t)ΨT (t)L(t)v̄
+ α(t)v̄TL(t)Ψ(t)ys,a(t) + β(t)yTs,a(t)ΨT (t)L(t)A(t)η(t)

+ α2(t)v̄TL(t)v̄ + α(t)β(t)v̄TL(t)A(t)η(t)

+ β(t)ηT (t)AT (t)L(t)Ψ(t)ys,a(t) + α(t)β(t)ηT (t)AT (t)L(t)v̄
+ β2(t)ηT (t)AT (t)L(t)A(t)η(t), (31)

where Ψ(t) = IN − β(t)L(t)− α(t)IN .
Taking expectation of both sides of (31) and applying the

inequality technology to every term yield that

E[P (t+ 1)] =E[yTs,a(t)ΨT (t)L(t)Ψ(t)ys,a(t)

+ α2(t)v̄TL(t)v̄ + β2(t)ηT (t)AT (t)L(t)A(t)η(t)]

≤(1− β(t)λ2(L)− α(t))2E[P (t)] + α2(t)E[||v̄||2|Ft]

+ β2(t)λ2(ATL)E[η2(t)|Ft] (32)

As η(t) is independent with {Ft}, then we have E[η2(t)|Ft] =
E[η2(t)] = var(η(t)) = 2c2i q

2t
i . Since var(η(t))→ 0 as t→

∞ is an decaying noise, then we have

E[P (t+ 1)] ≤(1− β(t)λ2(L)− α(t))2E[P (t)] + α2(t)E[||v̄||2|Ft]

=(1− 2α(t) + α2(t))E[P (t)] + α2(t)K

− (2β(t)λ2(L(t))− β2(t)λ2
2(L(t))

− 2α(t)β(t)λN (L(t)))E[P (t)]. (33)

With the parameters α(t) and β(t) defined by (3) in the full
paper, there exists a positive integer k0 and a constant w3 > 0,
such that for t ≥ Ts,a(k0) implies a.s.

2β(t)λ2(L(t))−β2(t)λ2
2(L(t))− 2α(t)β(t)λN (L(t))) ≥ 0,

0 < 1−2α(t) + α2(t) ≤ 1− w3α(t).

Then for every ε > 0, there exists tε > 0 such that

P(Ts,a(k0) > tε) < ε.

Now, for a given ε > 0, construct the process {P ε(t)} as
follows

P ε(t) = ‡(Ts,a(k0) ≤ tε)P (t),∀t, (34)

where ‡ denote the corresponding indicator random variable,
i.e., ‡(B) takes the value one on the event B and zero otherwise.
Then we have

E[P ε(t+ 1)] ≤ ‡ (Ts,a(k0) ≤ tε)[(1− c3α(t))E[P (t)] + α2(t)K]

≤(1− w3α(t))E[P ε(t)] + α2(t)K. (35)

Clearly, (35) satisifies the purview of the Proposition 4.1 in
[21], then we have P(limt→∞ E[P ε(t)] = 0) = 1 a.s.

Finally, we have the conclusion that the process {E[P (t)]}
converges to zero on the event {Ts,a(k0) ≤ ε}, which means
that

P( lim
t→∞

P (t) = 0) > 1− ε.

Since ε > 0 is chosen arbitrary, the mean square convergence
of yis,a follows by taking ε to zero.

X. PROOF OF THEOREM 2
Theorem X.1. Consider the undirected connected graph G,
under Assumptions 1-3 in the full paper, for every (s, a)-pair,
the Q-value of DP-QD-Learning can achieve consensus in
expectation almost surely as

lim
t→∞

E[Qis,a(t)− Q̄s,a(t)] = 0, i, j = 1, . . . , N, (36)

where Q̄s,a(t) = 1
N

∑N
i=1Q

i
s,a(t) is the average value of Qis,a

for all i ∈ N at time t.

Proof. Following the process of Lemma 5.2 in [21], we have

z̃k+1 =(IN − β(t)L(t)− α(t)IN )z̃k + αk(Ũk + J̃k) + βkA(t)η̃k,

where z̃k = zs,a(k) − 1
N

∑N
i=1 z

i
s,a(k) and η̃k = (1 − 1

N )ηk.
Obviously, this is the same form as Lemma 5.2 of [21], except
for the average value of the noise disturbance in the last term.
Therefore, we can easily conclude that its expectation is not
affected by the noise with the expectation of 0, so we have

E[z̃k+1] = (IN − β(t)L(t)− α(t)IN )E[z̃k] + αk(E[Ũk] + E[J̃k])

≤ (1− c2rk)E[||z̃k||] + αk(||Ũk||+ E[||J̃k||]).
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Then we get the same conclusion with Lemma 5.2 in [21]
that (k + 1)τE[z̃k] → 0 as k → ∞ a.s. for all τ ∈ (0, τ1 −
τ2 − 1/(2 + ε1)). In particular, E[z̃k]→ 0 as k →∞ a.s.

XI. THE BOUND OF AUXILIARY PROCESS

Lemma 4. Consider the auxiliary {Ft} adapted process
{zs,a(t)}, such that, for all t,

zs,a(t+ 1) = (1− αs,a(t))zs,a(t) + αs,a(t)(v̄s,a(t) + ε̄s,a(t))
(37)

With E[ε̄2] = K ′ <∞ and E[ε̄]→ 0, we have E[zs,a(t)]→ 0
and var(zs,a(t))→ 0 as t→∞ a.s.

Proof: Define a positive function Ht = z2
s,a(t). Then we

have as t→∞
E[Ht+1] =E[((1− αs,a(t))zs,a(t) + αs,a(t)(v̄s,a(t) + ε̄s,a(t)))2]

=(1− αs,a(t))2E[z2s,a(t)] + α2
s,a(t)E[v̄2

s,a(t) + ε̄2s,a(t)]

+ 2αs,a(t)(1− αs,a(t))E[zs,a(t)(v̄s,a(t) + ε̄s,a(t))]

+ 2α2
s,a(t)E[v̄s,a(t)ε̄s,a(t)]

=(1− at)E[z2s,a(t)] + bt(Kr +K′)

where at = 2αs,a(t) − α2
s,a(t) ∈ (0, 1), bt = α2

s,a(t) > 0,∑∞
t=1 at =∞, btat → 0 as t→ 0, and K = E[v̄2(t)] <∞ and

K ′ = E[ε̄2(t)] <∞.
By using Lemma 3.1 (Polyak, 1987) in [40], we have

E[Ht] = 0 as t→∞. Besides, we have E[zs,a(t+ 1)] = (1−
αs,a(t))E[zs,a(t)] +αs,a(t)E[v̄s,a(t) + ε̄s,a(t)] = 0 as t→∞.
Then we have var(zs,a(t)) = E[z2

s,a(t)]− (E[zs,a(t)])2 = 0.

XII. THE BOUND OF THE VARIANCE

From (22) we have

E[(Q̃s,a(t+ 1))2] ≤(1− αs,a(t) + γαs,a(t))2E[Q̃2
s,a(t)]

+
βs,a(t)2

N2
E[(1TND(t)η(t))2]

=MtE[Q̃2
s,a(t)] +WtE[η2(t)] (38)

where Mt = (1 − αs,a(t) + γαs,a(t))2 ∈ (0, 1) and Wt =
βs,a(t)2

N2 λN (D̄).
Let Ωt = E[(Q̃s,a(t))2] and Zt = E[η2(t)] = s2

i q
2t
i Then

we have the iteration of (38) as

Ωt ≤Mt−1Ωt−1 +Wt−1Zt−1

≤Mt−1Mt−2Ωt−2 +Mt−1Wt−2Zt−2 +Wt−1Zt−1

≤ . . .
≤Mt−1 . . .M1M0Ω0 +Wt−1Zt−1 +Mt−1Wt−2Zt−2

+ . . .+Mt−1Mt−2 . . .M1W0Z0

As Mt ∈ (0, 1), we have MtMt−1 . . .M0 → 0 as t → ∞.
Besides, M0 < M1 < . . . < Mt and W0 > W1 > . . . > Wt,
then we have

Ωt ≤W0Zt−1 +MtW0Zt−2 +M2
tW0Zt−3 + . . .+M t−1

t W0Z0

≤W0(s2
i q

2t−2
i +Mts

2
i q

2t−4
i +M2

t s
2
i q

2t−6
i + . . .)

= W0s
2
i q

2t−2
i (1 +

Mt

q2
i

+
M2
t

q4
i

+ . . .+
M t−1
t

q2t−2
i

)

= W0s
2
i q

2t−2
i

1− (Mt

q2
i

)t

1− Mt

q2
i

(39)

XIII. DPC-MARL

Algorithm 2 DPC-MARL

1: Inputs: Initial values of the parameters µi0, ω
i
0, ω̃

i
0, θ

i
0,∀i ∈

N ; the initial state of the environment s0 and the stepsizes
{βω,t}t≥0 and {βθ,t}t≥0. Each agent executes action ai0 ∼
πi(·|s0; θi0) and observes joint actions a0 = {a1

0, . . . , a
N
0 }.

Initialize the iteration counter t← 0.
2: for t = 0, 1, 2, . . . , do
3: for i = 1, . . . , N do
4: Observe the state st+1 and reward rit+1.
5: Update µit+1 ← (1− βω,t) · µit + βω,t · rit+1.
6: Select and execute action ait+1 ∼ πi(·|st+1; θit).
7: end for
8: Observe joint actions at+1 = {a1

t+1, . . . , a
N
t+1}

9: for i = 1, . . . , N do
10: TD error: δit = rit+1 − µit +Qt+1(ωit)−Qt(ωit).
11: Critic Step: ω̃it ← ωit + βω,t · δit · ∇ωQt(ωit).
12: Update Ait ← Qt(ω

i
t) −

∑
ai∈Ai π

i(st, a
i; θit) ·

Q(st, a
i, a−i;ωit).

13: Update ψit ← ∇θi log πi(st, a
i; θit).

14: Actor Step: θit+1 ← θit + βθ,t ·Ait · ψit.
15: DP Step: ω̂it = ω̃it + ηi(t), ηi(t) ∼ Lap(0, ιi(t))
16: end for
17: /* Exchange ω̂it over the communication network G.
18: for i = 1, . . . , N do
19: Consensus Step: ωit ← Average(ω̂jt ), j ∈ Ni.
20: end for
21: Update the iteration counter t← t+ 1.
22: end for
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